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SUMMARY 
A finite element formulation for the steady laminar flow of an incompressible fluid with microstructure has 
been developed. The particular fluids considered are commonly known as micropolar fluids, in which case 
suspended particulate microstructures are modelled by an ‘extended’ continuum formulation. The particle 
microspin is a new kinematic variable which is independent of the classical vorticity vector and thereby 
allows relative rotation between particles and the surrounding fluid. This formulation also gives rise to 
couple stresses in addition to classical force or traction stresses. The finite element formulation utilizes 
a variational approach and imposes conservation of mass through a penalty function. A general boundary 
condition for microspin has been incorporated whereby microspin at a solid boundary is constrained to be 
proportional to the fluid vorticity. The proportionality constant in this case can vary from zero to unity. 
Sample solutions are presented for fully developed flow through a straight tube and compared with an 
analytical solution. Results are also generated for flow through a constricted tube and compared with 
a Newtonian fluid solution. 
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INTRODUCTION 

One of the basic assumptions of classical continuum theory is that materials remain homo- 
geneous as the size of any arbitrary volume element decreases to a point. Real materials, however, 
are composed of discrete, finite components at the microstructural level and therefore sometimes 
exhibit behaviour that classical theory is unable to describe adequately. Consequently, various 
attempts have been made to ‘extend‘ or ‘generalize’ classical continuum theory with the intent of 
capturing a broader range of response phenomena. Although pioneering work was done much 
earlier,’-3 renewed interest in this topic began rather intensely in the early 1960s4-* While these 
efforts to ‘extend’ or ‘generalize’ classical theory differ in many respects, they share a common 
purpose in seeking to expand the range of applicability of the theory while retaining a continuum 
approach because of its inherent elegance and mathematical tractability. 

An approach frequently taken in extending classical continuum theory has been to introduce 
higher-order kinematic variables. The simplest form of this approach is to consider each particle 
of a material to have a rotation that is independent of the classical rotation. This allows each 
microstructural ‘particle’ to have a relative rotation with respect to the surrounding material. The 
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same basic theory has been developed by several workers using different conceptual frameworks 
and notations. One of the more widely cited and researched is the so-called ‘micropolar’ theory of 
Eringen.’,lo Details of the original developments of micropolar and similar theories are well 
documented in the literature.’’- l4 Recently, an entire textbook has been devoted to the subject 
of higher-order theories for non-classical fluids;” in this treatment an excellent overview of 
micropolar fluids is presented as a subclass of more complex theories. 

Physical problems that have attracted attention as possible applications of micropolar fluids 
typically involve the flow of fluids containing suspended particles. Human blood contains red 
blood cells and has therefore been studied extensively as a micropolar fluid.I6- 23 Squeeze film 
lubrication has also been treated as flow of a micropolar f l ~ i d . ~ ~ - ’ ~  Micropolar fluids and similar 
higher-order theories have even been applied to modelling turbulence, in which case the micro- 
structure is considered to be fluid 

Despite the substantial level of effort that has been focused on micropolar fluids, very few 
studies have examined problems for which analytical solutions could not be derived. Sastry and 
Rao2’ developed a specialized numerical technique for the laminar flow of a micropolar fluid in 
the entrance region of a porous channel. Solutions were generated by combining quasi-linear- 
ization, parametric differentiation and extrapolation procedures. Akay and Kaye3’ used finite 
differences to study the non-steady flow of a two-phase model for blood. Their model consisted of 
a micropolar fluid core surrounded by a concentric outer layer of a Newtonian fluid. The many 
advantages of finite element analysis, however, have yet to be exploited in studying the flow of 
micropolar fluids. The discussion to follow describes a finite element formulation that permits the 
investigation of much more general and complex problems involving the flow of micropolar 
fluids. 

MICROPOLAR FLUID THEORY 

The distinguishing feature of micropolar theory is the introduction of a particle rotation that is 
independent of the classical rotation. This kinematic variable is referred to as the microrotation. 
For a physical interpretation one may treat the micropolar fluid as a fluid containing suspended 
particles. The microrotation is then considered to be the rotation of the particles, while the 
classical rotation describes the rotation of the surrounding fluid. The existence of particle 
microrotation also gives rise to couple stresses or couples per unit area, in addition to traditional 
tractional or force stresses. Excellent detailed descriptions and discussions of micropolar fluids 
are presented in References 9 and 14. 

The three balance laws of micropolar fluid mechanics are conservation of mass, conservation of 
linear momentum and conservation of angular momentum. The first two are similar in form to 
those for classical fluid mechanics. The notation used here follows closely that of Eringen.’ 
Letting p denote mass density, z time, x i  Cartesian spatial co-ordinates and ui components of the 
velocity vector, the localized form of conservation of mass is given by 

aP a -+- (pu i )=o .  az axi 
With components of the body force vector given by fi and components of the tractional stress 
tensor by oji, conservation of linear momentum becomes 

aji, j+P(fi  -&)=O. (2) 
The overdot notation on the acceleration term iri indicates a material derivative which includes 
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both ‘local’ and ‘convective’ terms, as evident in the expanded form 

aui 
ar lji = - + ui, j u j .  (3) 

The new kinematic quantity, the microrotation, which is characteristic of micropolar fluids, 
enters into the conservation of angular momentum expression. The rate of microrotation is 
termed the microspin and is denoted v j ,  and i j  represents the rate of microspin or angular 
acceleration. Two other new quantities, the couple stress tensor (mji ) and the microinertia tensor 
( J j i ) ,  also appear in the expression for conservation of angular momentum, which is given in 
equation form by 

Note that body couples, i.e. couples per unit mass, are denoted by I i ,  and eih represents the 
permutation tensor. The microinertia ( J j i )  of a particle is a second-order tensor and is loosely 
analogous to the moment of inertia of a rigid body. Thus a physical interpretation of the last term 
in equation (4).is that it represents the angular momentum of each of the suspended particles. 
Recall that only the second term appears for classical fluids in the absence of body couples, in 
which case conservation of angular momentum simply imposes symmetry of the force stress 
tensor. The overdot again denotes a material derivative as follows: 

mji, j + eikn b k n  + p(li  - J j i $ j )  = 0. (4) 

av . 
ar 

i . = J + vj,  i ui. (5) 

Appropriate constitutive relations for a linear, isotropic and incompressible micropolar fluid 
are given by equations (6) and (7) below, where p is the fluid pressure and 6 ,  is the familiar 
Kronecker delta. In addition to the shear viscosity p, four new viscosity coefficients, K, a, p and y, 
are introduced: 

b i j  = - p 6 i j +  ( p + K ) & j  + P k i j ,  

mij = avk,kdij + pvi, j + y v j ,  i s  

(6) 

(7) 

The rate of microstrain, d i j ,  is also a quantity unique to extended continuum mechanics. In its 
most direct form the rate of microstrain is given by equation (8) in terms of microspin and velocity 
gradients. An alternative expression is presented in equation (9), which relates the microstrain 
rate to the traditional strain rate Eij ,  the traditional vorticity mk and the microspin vk: 

Substituting equation (9) into equation (6) yields a similar alternative form for the tractional 
stress constitutive relation: 

b i j =  -pdij+(2~+KK)Eij+Keijk(ok--k) .  (10) 

Note that the last term contains the expression o k  - v k ,  which represents the rate of rotation of the 
fluid, mk, relative to the rate of rotation of the microconstituent particle, v k .  As in the classical 
case, mk is the fluid vorticity vector and is given by 

o k  = t enmkum, n * (11) 

It is also apparent that the last term in equation (10) accounts for coupling between microspin 
and force stress. The second term in this equation indicates that the micropolar counterpart for 
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the traditional shear viscosity is p+lc/2. In the absence of micropolar effects, i.e. when K=O, 
equation (10) degenerates to the constitutive model for classical Newtonian fluids. This form of 
the expression for oij also serves to highlight that the force stress tensor is no longer symmetric for 
micropolar fluids. 

Field equations are generated by substituting the constitutive equations for force stress, 
equation (6), and couple stress, equation (7), into the expressions for conservation of linear 
momentum and angular momentum, equations (2) and (4), respectively. Thus the two field 
equations describing the behaviour of a linear, isotropic, incompressible micropolar fluid are 

- P , ~  + puj, ji + ( p  + lc)ui, j j +  rceijkvk, j +  p ( f i  - Ci) = 0, (12) 

(a+B)vj, ji+yvi,jj+~eijkuk,j-2~vi+p(li-Jii)=0. (13) 
Equation (12) reduces to the traditional Navier-Stokes equation for IC = 0. Note as well that 
equation (13) includes the simplification that the microinertia tensor is isotropic, i.e. 

J . . =  J l  JJ J l  ... (14) 

Boundary conditions are needed for both velocities and microspin in order to solve equations 
(12) and (13) for a specific problem. For velocities the conventional no-slip condition is employed 
at solid boundaries, in which case the fluid velocity is taken to be equal to the velocity of the 
boundary. A proper boundary condition for microspin is not readily apparent. The approach 
adopted here follows closely that of Kline et al.,” Erdogan” and more recently Chaturani and 
co-~orkers.’~*~’ The microspin at a solid boundary, vp, is related to the fluid vorticity vector, up, 
by an adjustable parameter S as indicated by 

v;=swp. (1 5 )  
No compelling theoretical argument or experimental evidence suggesting a correct value for S 

has been found in the literature. Its use simply provides a flexible approach, with the unfortunate 
side effect of essentially introducing another variable into the problem. 

FINITE ELEMENT FORMULATION 

Variational approach 

A variational statement of the problem can be developed by multiplying the conservation of 
linear and angular momentum equations by suitable trial functions and integrating over the 
spatial domain of interest (V). The trial functions must be continuous and satisfy essential 
boundary conditions. For the linear momentum equation the trial function is taken to be the 
variation of velocity, doi, so equation (2) becomes 

1“ [aji, + p(f i  - I&)] 6ui d V =  0. (16) 

For steady state analysis, ii reduces to the convection terms only, i.e. the product of velocity 
gradients ui, and velocities uj ,  as apparent from equation (3). The non-linearity introduced by 
these terms can be handled using a variety of approaches, such as Newton-Raphson or modified 
Newton methods, but a direct iteration scheme has been employed here for simplicity. In this case 
the velocity components uj are considered to be known and denoted u:, and the gradient terms 
ui,j  remain unknown. l d e  problem can then be solved and the new velocities used for u;. The 
procedure is then repeated, updating uj” until sufficient convergence is attained. 
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Treating the acceleration terms in equation (16) as linear since us is assumed known, the 
Gauss theorem can be applied in the usual manner. With appropriate simplification the following 
weak form expression results: 

(17) 

Note that the force traction vector t i=oj jnj  has been introduced, where nj represents direction 
cosines of the unit outer normal to surface S. 

For angular momentum the trial function is the variation of microspin, 6vi, and equation (4) 
becomes 

[ mji, j + eikn0kn + p( li  - Jji { j ) ]  6Vi d Y= 0. (18) 
!V 

Assuming steady state conditions and isotropy of microinertia (i.e. J j i  = Jd,,), the acceleration 
term reduces to the product of vi, and u j .  Taking the velocity components to be known (09) for 
each solution, applying the Gauss theorem and manipulating yields 

lv mji6vi,jdV-!v eiknokndvidV=!s bi6vidS+Jv pli6vidV-jv pJvl,jujobvidV. (19) 

In this case the couple stress traction vector bi = mjinj ,  which acts on surface S, is also introduced. 

Element equations 

To begin development of element equations, the domain is discretized into finite elements. The 
two primary unknowns, velocities and microspin, are then interpolated over each element. Thus 
for any particular element the velocity and microspin vector components are given by 

where h, are interpolation functions defined in local co-ordinates over the domain of each 
element, fiy and $y  are respective values for velocity and microspin components at each node, and 
n is typically the number of nodes in an element. 

A frequently employed method to treat the pressure term in the constitutive equation for force 
stress, and to impose conservation of mass at the same time, is to introduce a penalty parameter 
1 as developed by R e d d ~ . ~ '  Taking this approach, and also substituting the rate of microstrain 
from equation (8) into equation (6), the force stress constitutive equation takes the form 

oij = h & , k d i j  + ( p  + K) (eijkvk + vj, i). (21) 

Substituting the expressions from equation (20), the force stress over an element is given by 

o ; j = ~ (  m= 1 h m , k ~ p ) a i j + ( p + x )  [ eijk ( m =  1 h m j r ) + (  m= 1 h m , i i l > ] -  (22) 

Writing the stress components in a single column vector a", this equation can be expressed in 
matrix form as 

be = (1Ci + C,)B8 + C 3 H,i (23) 
where C1 contains ones and zeros, C2 and C3 contain material constants ( p  and ic), B contains 
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derivatives of interpolation functions, and H, contains interpolations functions. With a view 
towards expressing the variational statement of equation (17) in matrix form, the velocity 
variation and gradient of velocity variation vectors can be written in matrix form as 

6~ =Ha$, 6v, = B6 i, (24) 
where 6v is a vector containing the components of the variation of velocity, doi, 63 is a vector 
containing nodal values of these same quantities, 6v, is a vector containing components of the 
velocity gradient variation, 6ui, j ,  and H is a matrix containing interpolation functions. 

The variational statement associated with linear momentum, equation (17), can now be written 
in matrix form as 

J 63'BTa"dV= GiTH'tds+j p6t'HTfdV-J p6tTHTB,idV, 
V Js V V 

where B, is a matrix containing a combination of derivatives of interpolation functions and 
known velocities from a previous solution. Substituting the expression for force stress from 
equation (23) into equation (25), rearranging terms and factoring out diT yields 

I , -  ,- ,- 

69'(J V i.BTCIBtdV+J V BTC2BtdV+J V BTC3H,ldV 

P P P \ 

+ pHTB,3dV- HTtdS- pH'fdV =O. Jy Js J v  
Since the variation of velocity is arbitrary, the term in parentheses must vanish for equation (26) 
to hold. Nodal velocities and microspins are constant with respect to integration over the domain 
of each element, so the resulting expression can be written as 

(Kl + K2 +Kc)? + K30 = rl +r2, (27) 
where 

K1= IB'CIBdV, b 

rl = js H'tdS, 

r2 = jv pH'fd V. (27f) 

Equation (27) can be further simplified by forming a single, partitioned coefficient matrix 
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or 

i 
rK:I {:I= {rV'> * (29) 

(2nx3n) V ( 2 n x  1) 
(3n x 1) 

The dimensions of the matrices and vectors have been added for clarity for the case of n nodes per 
element, two velocity components and one microspin component (two-dimensional flow). 

This entire procedure is repeated for the angular momentum equation, beginning with an 
expression for couple stress over an element. Referring again to equation (20) for velocity and 
microspin over an element, the couple stress from equation (7) can be expressed as 

In matrix form the components of couple stress are arranged in a single column vector, which is 
given by 

me = C4Bv3, (31) 
where C4 is a matrix containing constitutive constants (a, f l  and y )  and B, contains spatial 
derivatives of interpolation functions. Variations of microspin and microspin gradients can also 
be expressed in matrix form as 

GV = H,63, 6v, = B,6 G, (32) 
where 6v is a vector containing the components of the variation of microspin, hi, 6 i  is a vector 
containing nodal values of these same quantities and 6v,, is a vector containing components of the 
variation of microspin gradient, 6vi, j .  The matrices H, and B, contain interpolation functions and 
their derivatives, respectively. 

The variational statement associated with angular momentum, equation (19), can also be 
written in matrix form. First, the effect of the permutation tensor eikn in the second term is 
represented by a square matrix P which contains ones and zeros and includes the negative sign 
preceding this term. Equation (19) then becomes 
r r r r r 

Note that the simplified convective acceleration terms are included through the matrix Bc which 
appears in the last term. As before, this matrix contains a combination of interpolation function 
derivatives and velocity components from a previous iteration. Substituting the constitutive 
relations for force stress, equation (23), and couple stress, equation (31), into the left-hand side of 
equation (33), rearranging terms and factoring out St' yields 

6:' ( Iv BT C4BV 3 d V+ jv AHTPC 

The variation of microspin is also arbitrary, so the term in parentheses is again forced to vanish. 
With nodal velocities and microspins factored out of the integrals, equation (34) can be rewritten 
as 

(K4+K5)i  +(K6 +K7 + Kb)6=r3 +r4, (35) 
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K 4 = 1  IHTPC,BdV, 

K5= HTPCZBdV, 

K 6 = j v  BrC4B,dV, 

K7 = H;PC,H,dV, 

I 

l v  

n 

Simplifying equation (35) and including matrix dimensions again produces the following form: 

or 

or 

(3n x 1) 

A single element equation can now be formed by combining equations (29) and (37) to give 

[3 Q={Z} 
(3n x 3n) (3n x 1) ( 3 n  x 1) 

[K"] {:}={re}. V (39) 

Assembly and boundary conditions 

Element equations are assembled in the usual manner to form a single matrix equation for the 
entire domain or system. Element coefficient matrices are combined to form the coefficient matrix 
for the system, K, and the vectors v and Y now represent nodal unknowns for the entire system: 

[K] - ={r}. {;I 
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Essential boundary conditions in the form of specified velocities and/or microspins are 
imposed in a typical manner. Specified velocities (vbc) and/or microspins (vbc) are eliminated from 
the vector of nodal unknowns, the coefficient matrix is reduced accordingly and, for non-zero 
essential boundary conditions, the right-hand-side vector is augmented by the product of each 
known value and the corresponding column of the coefficient matrix. The modified system 
equation becomes 

where K,, is the reduced coefficient matrix, v,, and v,, are vectors containing the remaining 
unknown velocities and microspins, respectively, and Kebc is a matrix containing appropriate 
columns of the original coefficient matrix. Natural boundary conditions are also imposed in 
a customary manner. The right-hand-side vector r is formed as an assemblage of contributions 
from each element vector re. This element right-hand-side vector contains contributions from 
both surface tractions (force stress and couple stress) and body forces ( f )  and couples (I). Natural 
boundary conditions are therefore implemented on an element-by-element basis by evaluating 
the surface integral vectors: rl for specified force stress tractions (t) and r3 for specified couple 
stress tractions (b). Expressions for r1 and r3 were presented previously in equations (27e) and 
(35f), respectively. Thus equation (41) includes natural boundary conditions through the vector r. 

Boundary conditions for microspin at solid boundaries are specified by equation (15), which 
states that microspin is related to the vorticity vector. Combining this with the definition of 
vorticity in terms of velocity gradients, equation (1 l), yields the following expression relating 
microspin to velocity gradients at solid boundaries: 

v i  =(S/2)eijkok, j .  (42) 

This boundary condition for microspin simply amounts to constraining microspin components to 
be related to velocity components in a prescribed manner. This unconventional boundary 
condition is actually implemented on an element-by-element basis similar to natural boundary 
conditions. First, the vector of nodal microspins is partitioned into a vector containing microspin 
components at points on solid boundaries, ir,, and a vector containing the remaining unknown 
nodal microspins, 9. The cofficient matrix can also be partitioned such that element equation (39) 
becomes 

which can be written as two separate matrix equations 
f $ l  

If matrix dimensions are included again for the case of 2D flow (i.e. two velocities and one 
microspin), then the number of ‘active’ unknowns per element, n,, is equal to 3n-n,, where n, is 
the number of nodes on the solid boundary and n is the number of nodes per element. With the 
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number of ‘active’ unknown microspins per element denoted n, (and equal to n - nJ, the matrix 
K& in equation (44a) can be further partitioned to yield 

The conditions of equation (42) can now be imposed on 9, and expressed in matrix form as 

where B& is a matrix that contains spatial derivatives of interpolation functions and several 
columns of zeros, since $ includes all the unknown nodal velocities for the element whereas 
is contains unknown nodal microspins on the solid boundary only. Substituting 9, from equation 
(46), the third term of equation (45) can be expressed as 

[K&1 { ~ ~ } = [ ~ ~ s I S [ B ~ b c l  { ~ } = [ K ~ b c l  (474 

[K%x] =s[K%.I [B%d (47b) 

where KEbc is defined by 

Equation (45) can now be rewritten in its entirety as 

[K1 { t } + [ K b l  { ~ ) + [ K & C ]  {$}={rt} 

or, with regrouping of terms, 

Defining the matrix KQc by 

[Kbl=[Kk+K~bcl ,  

equation (49) becomes 

Adding matrix dimensions again for clarity and combining the coefficient matrix yields 

CKZI = { G I .  (52) 
(4 x n.) CI (n.xl) 

(n. x 1) 

In this form the microspins that lie on solid boundaries have been eliminated as independent 
unknowns and the element coefficient matrix has been reduced in size accordingly. The constraint 
relating microspin to velocity at the boundaries is included in the appropriate terms of the new 
coefficient matrix K:. 

It should be noted that in the actual computer implementation the derivatives of interpolation 
functions contained in Btbc are evaluated at the nodes on the solid boundaries. All other terms 
involving interpolation functions and their derivatives in the element coefficient matrices are 
calculated in the usual manner at numerical integration points. Furthermore, the original 
coefficient matrix K‘ need not be explicitly reduced to K:,. Essentially the same effect is achieved 
by simply adding in the constraint terms from KfbC as indicated in equation (50) and then 
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eliminating microspins on solid boundaries as unknowns in the global, or system level, equations 
as is done for essential boundary conditions. With this approach employed, equation (41) now 
becomes 

where K:, contains terms reflecting the constraint on microspins at solid boundaries, Ylue contains 
all unknown microspins not on solid boundaries or specified through essential boundary 
conditions, and rbc has been further reduced by the number of microspins on solid boundaries. In 
solving this equation, it should be noted that the coefficient matrix KIV also contains non-linear 
terms due to the convective acceleration terms. In addition, the matrix is unsymmetric as 
a consequence of the asymmetry of the force stress tensor aij. 

SAMPLE SOLUTIONS 

Flow through a straight tube 

Problem description. To demonstrate the finite element formulation, example solutions are first 
presented for the steady flow of a micropolar fluid through a straight tube of circular cross- 
section. The problem is axisymmetric, so cylindrical co-ordinates are introduced as indicated in 
the mesh of Figure 1. The angular 8-co-ordinate direction is perpendicular to the r-z plane 
shown. The mesh of nine-noded Lagrangian elements is refined somewhat as r increases because 
of higher gradients near the tube wall. Three-by-three Gauss quadrature numerical integration 
has been used for evaluating most of the coefficient matrices. For the matrix containing the 
incompressibility constraint the integration order has been reduced to two-by-two. 

For axisymmetric, fully developed flow the non-zero primary unknowns reduce to one 
component of microspin, Vg, and two components of velocity, u, and 0,. Appropriate boundary 

r=R=0.02500 -1-t- r / R = l  .O 

0.02066 -l+i- 0.8266 

0.01 524 -1-1- 0.6098 

z=O 0.01 6 0.632 

Figure 1. Finite element mesh for sample problem 
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conditions at the solid boundary ( r = R )  and at the tube centreline (r=O) are 

v,=ur=O at r = R ,  (544 

V~=SO~=(S/~)(V,,.-U~,,) at r=R,  (54b) 

tZ=v ,=vo=O at r=O.  (544 
The natural boundary condition represented by t ,  = 0 indicates a traction-free condition; for the 
special case of the tube centreline this amounts to requiring the shear stress component a,, to 
vanish. Since Vg and v, are also constrained to vanish along this boundary, the condition further 
reduces to zero velocity gradient or v , , ~  = 0. Inlet and outlet boundary conditions are 

t , = - P  and bg=V,=O at z=O, (544 

tz=bg=v,=O at z=0*032cm. (54d 

The natural boundary conditions at the inlet and outlet in terms of the force stress traction 
t, create a net driving pressure P.  The inlet and outlet are both considered to be traction-free in 
terms of the couple stress traction be, which imposes the fully developed flow condition V ~ , ~ = O .  

Values for the constitutive constants have been taken from Ariman et ~ 1 . , ~ '  who derived them 
from experimental work by Bugliarello and S e ~ i l l a . ~ ~  They are intended to represent the physical 
properties of blood for a red blood cell concentration of 40%. For axisymmetric flow conditions 
the micropolar or couple stress constant a is not needed because the term containing this 
parameter drops out of the constitutive relation for couple stress, equation (7). Thus the values 
used in the sample solutions are 

p = 0.0120 CP, 

K =0-0196 cP, 

~=-12~Ox10-*gCms-',  

y =  12.0 x lo-* gcms-l, (55d) 

5=0-5504 10-5 Cm. (554 
Recall that the equivalent shear viscosity for a corresponding classical Newtonian fluid is given 
by 

p + K/2 = 0.021 8 CP. (56) 

Results and discussion. Chaturani and Mahajan have solved this problem analytically and 
provide Bessel function expressions for velocities and microspin in Reference 16. Results 
generated from these expressions are included in Table I along with finite element results using 
the present formulation. Maximum axial velocities, which occur at the tube centreline, and 
microspins at the tube wall are given. The flow rate for all cases has been held constant at 
8.27 x cm3 s- ', which requires different driving pressures for each case. Finite element 
solutions typically converged in 8- 10 iterations. Plots showing profiles of velocity and microspin 
as a function of radial location are presented in Figures 2 and 3. Note that plots have been 
presented for the extreme values of S (0-0 and 1-0) and one intermediate value (0-3525) rather than 
for all five values of S studied. As evident from Table I and the plots, the finite element solutions 
agree quite well with analytical results for velocity and microspin. Values for microspin are 
generally less accurate but differ by no more than 6% from the analytical solution. Accuracy 
decreases as S approaches zero because of the more extreme microspin gradients near the tube 
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Table I. Velocity and microspin results 

u, at r=O (cms-’) vg at r = R  (rads-’) 

S (dyn cm-2) Ref. 16 F.E. Ref. 16 F.E. 
Inlet P 

0.0 391.3 8.765 8.766 0.0 0.0 
0.1663 389.3 8.720 8.722 44.3 46.6 
0.3525 386.8 8.664 8.663 98.5 102.6 
0.8283 379.3 8.495 8.499 264.6 266.5 
1 .o 3760 8.422 8.434 336.9 334.0 

~ ~~~~~ ~ 

Note: the axial location for F.E. results is z=0*016cm. 

Table 11. Shear stresses at tube wall (r = R) 

B,, (dyn B,, (dyn cm-’) 
Inlet P 

S (dyn cm-2) Ref. 16 F.E. Ref. 16 F.E. 

0.0 391.3 6 14 6-50 16-17 17.11 
0.1663 389.3 7.26 7.64 15.97 1680 
0.3525 386.8 8.64 9.00 15.74 16.39 
0.8283 379.3 12.86 12.95 15.01 15.11 
1 .o 376.0 14.69 14.56 14-69 14.56 

Note: the axial location for F.E. results is z=0.016cm. 

wall as a result of greater ‘relative rotation’ O g - v g .  The vorticity vector o g  depends on the 
velocity field whereas microspin V g  is being constrained to be a smaller and smaller proportion of 

(see equation (54b)). 
Results for shear stresses at the tube wall are summarized in TableII. Once again, values 

derived from the analytical solution of Chaturani and Mahajan16 have been included for 
comparison. Shear stress profile plots are presented in Figures 4 and 5. As is characteristic of 
micropolar continuum theory, the stress tensor is not symmetric, so the shear stress components 
are not equal. The special case of S= 1 is an exception because of zero relative rotation, as can be 
seen from the alternative form of the force stress constitutive relation, equation (10). Shear stresses 
are typically not as accurate as the primary variables since they are derived from gradients of these 
variables. In this case the inaccuracies follow the same pattern as those for microspin: they are 
greater as S approaches zero, they are greater near the wall, and the maximum percentage 
difference is slightly less than 6%. 

Flow through a constricted tube 

Problem description. The finite element formulation has also been used to study the flow of 
a micropolar fluid through a tube containing a constriction. Like the simpler example, the tube is 
straight and has a circular cross-section. Unlike the simpler case, however, analytical solutions 
are not available. The problem is again axisymmetric as depicted in Figure 6. The constriction is 
formed by a smooth cosine function decrease in tube radius. 
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Velocity (crn/s) 

Figure 2. Axial velocity (u,) profiles for S = M ,  0.3525 and 1-0 
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Figure 3. Microspin (ve)  profiles for S=O.O, 0,3525 and 1.0 
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Figure 5. Shear stress @,*) profiles for S =O*O, 0.3525 and 1.0 
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Figure 6. Constricted tube details 

Table 111. Summary of results for stenosis problem 

Boundary Inlet Maximum wall Maximum axial 
pressure shear stress velocity u, Fluid condition 

type parameter S (dyn cm-2) (dyn cm-') (cm s - l )  

Newtonian - 3000 506.9 67.29 
Micropolar 0.0 3627 644.2 71.23 

Micropolar 0.3525 3435 596-9 7013 
Micropolar 08283 3150 525.6 68.53 
Micropolar 1 .o 3040 497.8 67.94 

Micropolar 0.1663 3540 622-7 7075 

This problem has been examined in greater detail in studying the flow of blood through 
a stenosis or local narrowing of an artery.34 Thus the constitutive constants are the same as given 
before in equation (55). The primary unknowns are again vg, u, and u,. Boundary conditions at the 
tube centreline and wall are the same as for the previous example, equations (54a)-(54c), with the 
exception that the solid boundary is now at r = r o  rather than r = R ,  and ro is given by 

- 
ro = R ( 1  -i[l +cos(7rg)]} for - 1 GZg 1. (57b) 

Inlet and outlet boundary conditions are likewise essentially the same as before, equations (54d) 
and (54e), but the inlet axial co-ordinate is now z= -0.15 cm and the outlet z =0.15 cm. The finite 
element mesh for the problem employs nine-noded Lagrangian elements with greater spatial 
refinement in the radial dimension near the vessel wall and in the axial dimension near the 
'stenosis throat' (section of minimum radius at Z= 0). 

Results and discussion. Results for several values of the rnicrospin boundary condition para- 
meter (S) are summarized in Table I11 and compared with results for a classical Newtonian fluid. 
The flow rate has again been maintained at 8.27 x lo-' cm3 s- '  for all cases. The driving 
pressures are included in Table IILThe maximum wall shear stress is the largest value of the shear 
stress component acting on a plane tangent to the tube wall. This stress increases greatly as the 
tube diameter decreases and peaks slightly upstream from the stenosis throat. The maximum 
axial velocity occurs along the tube centreline (r = 0) slightly downstream from the stenosis throat. 
Stresses and velocities for the micropolar fluid are generally higher than for the Newtonian fluid. 
The largest differences occur for S =0, in which case the maximum wall shear is 27% higher while 
the maximum velocity is only 6% higher. 
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Figure 7. Axial velocity (u,) profiles at stenosis throat (Z=O) 
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Figure 8. Shear stress (OJ profiles at stenosis throat (Z=O) 

Further details of the solutions for the S=O case are provided in the plots of Figures 7-9. 
Velocity profiles at the stenosis throat are compared in Figure 7. The greatest deviation between 
the micropolar and Newtonian solutions occurs at the tube centreline, where the axial velocity is 
about 6% higher for the micropolar fluid. The shear stress profiles in Figures 8 and 9 show more 
substantial differences (up to 50%) between micropolar and Newtonian solutions, particularly 
near the tube wall. These plots also highlight the asymmetry of the force stress tensor for 
micropolar fluids. An interesting finding from these results is that a micropolar fluid can exhibit 
a velocity profile quite similar to that of a Newtonian fluid yet have very different shear stresses. 
Stresses are more directly dependent upon velocity gradients and the relative rotation, or 
difference between fluid vorticity (ae) and particle microspin (ve). 
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Figure 9. Shear stress (u,~) profiles at stenosis throat @=O) 

CONCLUDING REMARKS 

The finite element formulation developed and demonstrated herein provides an effective 
numerical tool for solving problems involving the incompressible laminar flow of a class of fluids 
with microstructure. The specific case treated is that of micropolar fluids. The formulation 
includes an adjustable microspin boundary condition parameter for fluid microspin, which yields 
a flexible approach for examining a variety of solutions and assumptions. Solutions presented for 
the first sample problem agree quite well with analytical results. Greater accuracy could be 
obtained by refining the mesh accordingly. A major advantage offered by the finite element 
method is the ability to model flow through irregularly shaped regions. As an example, the 
formulation presented here has also been used to study blood flow through a stenosis or local 
vessel constriction, with blood modelled as a micropolar fluid. The method could be similarly 
applied to a variety of more general and complex problems involving the flow of fluids containing 
a solid particulate suspension phase. 
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